
1

A Quick Start into DAEdalon

1.1 Elastomechanical Example

Let’s start with some considerations on a simple elastomechanical example as
given in Fig. 1.1 in order to get a first insight into the basics and functionalities
of the Finite Element Method and especially the open structure of DAEdalon.

To restrict ourselves, we look onto a thin, linear elastic structure, fixed at
a part of its boundary and loaded by a concentrated load F . In that case,
the material behaviour is given by two parameters, the Youngs modulus as
E = 2.1 · 105 MPa and the Poisson ratio as ν = 0.3, respectively.

8 mm

4
m

m

F = 100 N

∅ 1 mm

Fig. 1.1. Example of a Thin Panel with a Hole



2 1 A Quick Start into DAEdalon

We are interested in the deflection of the Panel and the stress distribution
inside.

1.2 Principle of Virtual Displacements

In order to get a short introduction into DAEdalon and the mechanical story

behind, we write down the weak form of equilibrium as initial boundary value
problem of linear elasto–static

∫

v

σ : δε dv =

∫

a

tT · δu da , (1.1)

which we discretise and solve by DAEdalon within the Matlab environment.
In (1.1) the left hand side describes the virtual internal work and the term
of the right hand side represents the virtual work of the surface loads t on
the considered structure — neclecting possible body forces without restricting
generality.

Firstly, we consider a two–dimensional (2d) case with plane stress assump-
tion (σ33 ≡ 0) in a small strain regime, where we notice the coefficients of the
symmetric stress tensor σ in vector type form exploiting the so called Voigt

notation as

σ̌ =





σ11

σ22

σ12



 =





σ1

σ2

σ4



 . (1.2)

Doing that in an analogue manner with the strain measure ε except of the
shear entries, which we notice as double

ε̌ =





ε11

ε22

2 ε12



 =





ε1

ε2

ε4



 , (1.3)

we are able to write (1.1) as

∫

v

δε̌T · σ̌ dv =

∫

a

δuT · t da . (1.4)

Please note, that we are able to formulate (1.4) in such a manner by using
(1.2) and (1.3) in order to compute the double–contracting product in (1.1)
by the scalar product δε̌T · σ̌ ≡ σ : δε, where we used the symmetry of σ and
ε and especially the notation in (1.3) to obtain the equivalence.

As constitutive model, we use in that prologue Hooke’s law, which con-
nects in the simplest way the strains and the stresses by a fourth order tensor
ˇ given by Youngs’s modulus E and the Poisson ration ν. Making use of
the above described Voigt notation, we can write



1.3 Discretization of Basic Equations 3

σ̌ = ˇ · ε̌ =
E

1 − ν
2





1 ν 0
ν 1 0
0 0 1−ν

2



 · ε̌ (1.5)

for a plane stress formulation.

1.3 Discretization of Basic Equations

We are now in the situation to discretize the given problem in form of (1.4).
Let us assume to approximate as well the geometry x as the displacements u

by the same functions N . This proceeding is known as isoparametric concept.
In parallel, we have to subdivide the considered structure into smaller parts
— the finite elements, as can exemplary be seen in Fig. 1.2. These finite el-

finite element nodex, ux

y, uy

F

node #8

Fig. 1.2. Discretized Structure with Load F and Boundary Conditions

ements assemble our structure spatialy. They are declared geometrically by
the position of the nodes. From the mathematical point of view, the nodes
are defined by their discrete positions xI = [x y]TI and carry the mechanical
fields likewise in discrete form. In our example, the displacements field u is of
interest and it is the unknown field in (1.1) and (1.4). So, that quantity exists
due to the discretization on the nodes as uI = [ux uy]

T

I , where I counts the
number of nodes in the problem. Usualy, one concentrate the look onto the
element level and give the above mentioned approximation by counting over
the element nodes — in that case, we choose a discretization and approxima-
tion by classical 4–noded elements (often called quadrilaterals). The geometry
and the displacement field is given element–wise by



4 1 A Quick Start into DAEdalon

xe =

4
∑

I=1

NI(.)xI and ue =

4
∑

I=1

NI(.)uI . (1.6)

More details about the so called shape functions N should be skipped in that
section and will be picked up in Sec. 2.6.2. Nevertheless, now we are able to
give the discretization of the strain field ε as spatial derivative of the discrete
displacement field as

ε
e =

4
∑

I=1

BI(.) · uI , (1.7)

where we order the derivatives of the shape functions NI of node number I in

BI =







∂NI

∂x
0

0 ∂NI

∂y
∂NI

∂y
∂NI

∂x






. (1.8)

At the same time, we collect the four BI(I = 1, 2, 3, 4) as

Be = [B1 B2 B3 B4] (1.9)

in the block matrix Be. Reformulating (1.4) with these results (1.5)–(1.9), we
obtain

A δue T ·

∫

v

Be T
· ˇ ·Be

· ue dv − δue T ·

∫

a

t da = 0 (1.10)

with the assumption of discretising the variations δue and δε̌e in the same
way as for ue and ε̌

e itself, see e.g. (1.6). Please note, that we define by

the A–operator the assembly procedure, which is in some sense a main task
of any FE code. One can understand this operation as the computational
counterpart of the discretiszation procedure with respect to the given element–
node–connectivity. We describe the treatment of that operation by DAEdalon

in Sec. 4.4 in more detail.
By straight forward manipulations, (1.10) can be reformulated into

δuT · [K · u− l ] = 0 , (1.11)

where the stiffness matrix of the system K is identified as

K = A
∫

v

Be T
· ˇ ·Be dv (1.12)

and the load vector l as

l = A
∫

a

tda , (1.13)

respectively. Please note the assembly of the global solution vector u in



1.4 Run DAEdalon 5

u = A ue (1.14)

and its virtual counterpart δu, analogously. Assuming the vector δu to obtain
any value, the product in (1.11) vanishes by taking

K · u − l = 0 . (1.15)

This enables us to solve (1.15) for u by

u = K−1
· l (1.16)

for that linear case. Further possible treatments in the solution will be dis-
cussed in Sec. 2.7.

So, we obtain the global solution of the system given in the nodal displace-
ments resulting in the deformed structure.

1.4 Run DAEdalon

We apply the discribed procedure to solve the stated problem of Sec. 1.1 by
the FE method using DAEdalon. Doing so, one has generally to define the
given problem in a prestructured way by different input files. This is often
called preprocessing.

DAEdalon exspects at least information of the following form and structure
by the given files in the subdirectory /input relativ to our working directory:

For this example, the mesh consists of 131 nodes and 110 elements,
where here the first and the last four lines of the whole table of both files
are given exemplary. The physical positions of the nodes are given line by
line, where the three columns declare the x, y and z coodinate, respec-
tively, in node.inp, see Fig. 1.3. In contrast, the declaration of the el-
ements follow the rule material number, local node 1, local node 2,

local node 3, local node 4 for that typical 4–noded–element, where the
local counting is in counterclockwise order. This is given in el.inp, which is
illustrated in details in Fig. 1.4. Additionally, we declare linear elastic ma-
terial behaviour and the integration order within the described element by
mat1.inp shown in Fig. 1.5, where especially the Youngs modulus and the
Poisson number are given. The basic geometrical informations describing
the elemente behaviour are given as geom.inp in Fig. 1.6. Nevertheless, the
information about number of nodes and elements is possibly redundant with
the information in node.inp and el.inp, respectively, so that we can set 0

at these positions in that file.
At last, for this example, the boundary conditions of the problem have to

be described by given displacements in displ.inp, see Fig. 1.7. as and by
prescibed loads in force.inp as can be seen in Fig. 1.8. Now, we are able
to start DAEdalon within a given Matlab environment by prompting dae,
which initialize the DAEdalon–FEM–system.



6 1 A Quick Start into DAEdalon

0.0000 0.0000 0.0

8.0000 0.0000 0.0

1.3333 0.0000 0.0

2.6667 0.0000 0.0
.. .. ..

3.9103 1.1350 0.0

5.0820 2.2103 0.0

2.9001 0.8170 0.0

x

4.7273 1.3340 0.0

y z–position, in mm

Fig. 1.3. Structure of Input File node.inp: Coordinates of Nodes #1 — # 131

1 125 121 110 124
1 111 125 124 12

1 120 118 121 125
1 120 125 111 126

1 38 20 44 67
1 20 25 43 44

1 90 89 65 66

1 1 3 85 18

.. ..

node 1
node 4 of elementnode 2

material

Fig. 1.4. Structure of Input File el.inp: Material and Connectivity of Elements

0

2.1e5

4

4

1

0.3

element type

number of integration points

number of material

Youngs modulus, in MPa

Poisson number

reserved for inelasticity
see first column of el.inp

Fig. 1.5. Structure of Input File mat1.inp

The instruction lprob loads the above given data defining our actual prob-
lem and time increments the time counter to 1.0.



1.4 Run DAEdalon 7

2

2

0

0

1

4

number of nodes

number of elements

number of material

number degrees of freedom per node

number of node per element

number of physical dimensions
see first column of el.inp

Fig. 1.6. Structure of Input File geom.inp

17 1 0.0

18 1 0.0

1 2 0.0

1 1 0.0

11 1 0.0

number of node

prescribed displacement

degree of freedom

Fig. 1.7. Structure of Input File displ.inp

number of node

degree of freedom

(in negative direction)
applied force, in N

8 2 -100.0

Fig. 1.8. Structure of Input File force.inp

A first check of our model can be done by visualizing the defined mesh,
boundary conditions and applied forces by mesh0, boun and forc, respectively.

go, which consists of stiffness, syst, solv, residuum. The global as-
sembly process of K and r is carried out in syst, where also the boundary
conditions are respected.

With solv the global system as given in (1.15) is solved for u.
One can check the “quality” of the solution by computing the global

residuum
r = K · u − l , (1.17)

by residuum, which gives the scalar value rT · r. A very small value for rT · r

(computationaly zero, e.g. 10−9 or smaller) indicates the fulfillment of condi-
tion (1.15).



8 1 A Quick Start into DAEdalon

The deformed structure can be visualized by meshx to get an impression of
the solution. A scaling of the displacements is applied for the plot by setting
the variable defo scal to the scaling factor.

Visualization of the Results for Example 1.1

By default, we reserved cont(1· · ·2· · · 3) for the strains εx, εy and 2 εxy, re-
spectively, see (1.7), while in cont(4· · ·5· · ·6) the stress σx, σy, σxy is stored.

y, uy

x, ux

σx

in MPa

F

Fig. 1.9. Stress Distribution σx as Contour Plot in Deformed Structure.

Deformation Scaled with Factor 30 by defo scal=30.0. Undeformed Shape in Back-

ground

In that sense, the σx stress distribution as shown in Fig. 1.9 can by ob-
tained by cont(4) as contour plot.


